48 research outputs found

    PV2TEA: Patching Visual Modality to Textual-Established Information Extraction

    Full text link
    Information extraction, e.g., attribute value extraction, has been extensively studied and formulated based only on text. However, many attributes can benefit from image-based extraction, like color, shape, pattern, among others. The visual modality has long been underutilized, mainly due to multimodal annotation difficulty. In this paper, we aim to patch the visual modality to the textual-established attribute information extractor. The cross-modality integration faces several unique challenges: (C1) images and textual descriptions are loosely paired intra-sample and inter-samples; (C2) images usually contain rich backgrounds that can mislead the prediction; (C3) weakly supervised labels from textual-established extractors are biased for multimodal training. We present PV2TEA, an encoder-decoder architecture equipped with three bias reduction schemes: (S1) Augmented label-smoothed contrast to improve the cross-modality alignment for loosely-paired image and text; (S2) Attention-pruning that adaptively distinguishes the visual foreground; (S3) Two-level neighborhood regularization that mitigates the label textual bias via reliability estimation. Empirical results on real-world e-Commerce datasets demonstrate up to 11.74% absolute (20.97% relatively) F1 increase over unimodal baselines.Comment: ACL 2023 Finding

    A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants

    Get PDF
    Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164\ua0Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models

    Impact of the Inaccuracy of Distance Prediction Algorithms on Internet Applications--an Analytical and Comparative Study

    Get PDF
    Distance prediction algorithms use O(N) Round Trip Time (RTT) measurements to predict the N2 RTTs among N nodes. Distance prediction can be applied to improve the performance of a wide variety of Internet applications: for instance, to guide the selection of a download server from multiple replicas, or to guide the construction of overlay networks or multicast trees. Although the accuracy of existing prediction algorithms has been extensively compared using the relative prediction error metric, their impact on applications has not been systematically studied. In this paper, we consider distance prediction algorithms from an application\u27s perspective to answer the following questions: (1) Are existing prediction algorithms adequate for the applications? (2) Is there a significant performance difference between the different prediction algorithms, and which is the best from the application perspective? (3) How does the prediction error propagate to affect the user perceived application performance? (4) How can we address the fundamental limitation (i.e., inaccuracy) of distance prediction algorithms? We systematically experiment with three types of representative applications (overlay multicast, server selection, and overlay construction), three distance prediction algorithms (GNP, IDES, and the triangulated heuristic), and three real-world distance datasets (King, PlanetLab, and AMP). We find that, although using prediction can improve the performance of these applications, the achieved performance can be dramatically worse than the optimal case where the real distances are known. We formulate statistical models to explain this performance gap. In addition, we explore various techniques to improve the prediction accuracy and the performance of prediction-based applications. We find that selectively conducting a small number of measurements based on prediction-based screening is most effective
    corecore